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Diene Complexes of Pentamethylcyclopentadienyltitanium Chloride.
Synthesis and First X-Ray Structure of Titanium-Diene Complexes
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A series of titanium-diene complexes has been prepared by the
reaction with TiCl3(C5Me5) and (2-butene-1,4-diyl)magnesium deriva-
tives and the first X-ray structure analysis of titanium-diene
complex, TiCl(CsMeS)(s-cis—butadiene), revealed novel prone (endo)

geometry for diene coordination.

The recent accelerated progress in group 4A-5A early transition metal organo-
metallic chemistry has proved many important structural aspects together with their
versatile reactivities toward electrophiles, which have not been observed for

D Metal-diene complexes are one of

middle and late transition metal complexes.
the most extensively investigated series of this class of metal complexes and

characteristic supine(exo) oriented n4—meta11acyclo—3-pentene structure has been
reported for TaCl L(dlene)(L C5 5 Or C Me ) 2)

(2,3- dlmethylbutadlene)3) based on the X-ray structure analysis.

and more recently for HfCl(C Me ) -

Since the highly active oligo- and polymerizations of conjugated dienes have
been known to be effectively catalyzed by Ti or V species presumably vZa an inter-
mediate involving a diene-coordinated organometallics, the preparation and full-
characterization of first row transition metal-diene complexes are of fundamental
significance. We have found that titanium-diene complexes of the type TiCl(CsMeS)—
(diene) are available as air and moisture sensitive blue crystals in ca. 50% yield,
when the reaction of TiC13(C5Me5) with (2-butene-1,4-diyl)magnesium or reaction of
TiCl3(C5Me5) with i-BuMgCl (2 equivalent) in the presence of a conjugated diene was
performed under the highly controlled conditions with appropriate purification
4) The resulting TiCl(C5Me5)(isoprene)(l) and TiCl(CsMes)(2,3-dimethy1buta-
diene) (2) exhibit conventional supine geometry as confirmed in terms of 'H NMR

methods.

spectroscopys) by reference to the NMR parameters of well characterized HfCl(CSMeS)-
(2,3-dimethylbutadiéne) and TaClz(CsMes)(diene), while TiCl(CsMes)(butadiene)(g)
and TiCl(CSMeS)(1,4-dipheny1butadiene)(i) show quite different chemical shift
values,s)
the exact molecular structures of 3 and 4, the X-ray crystal structure analysis of
TiCl(CSMeS)(butadiene)(g) has been carried out.

possibly due to the novel prone(endo) structure. In order to establish
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RZ
TiCl3(C5M95) + -E-Mg 1
R

R1
TiC|3(C5M65) +

supine(exo) prone(endo)
1, R=R*4:zH, RZ:CH3 3. R"™:H
2,R'=R%H,R*=CH; 4 R¥3:H,R-R*=CgHs

Crystal Data of 3: C14H21C1Ti, M=272.6, monoclinic, space group P21/c,
o ]

a=6.999(1), b=14.625(3), ¢=13.842(2) A, B=95.61(2)°, U=1410.0(4) A3, z=4, Dc=1.284
g cm_3, U (MoKo)=7.9 cm_1. The X-ray diffraction data were measured on a Rigaku
automated, four-circle diffractometer with Zr-filtered MoKo radiation by the use of
crystal sealed in a thin-walled glass capillary tube under argon. A total of 4106
independent reflections was collected up to 26=60° by the 6-26 scan method, of
which 2367 were observed reflections [[Fo|>3o(FO)]. The crystal structure was
solved by the conventional heavy atom method and was refined by the full-matrix
least-squares (XRAY-76).7) The final R (Rw) index is 0.083 (0.087). The weighting
scheme applied was w=[02(Fo)+0.003(F°)2]—1.

Figure 1 shows an ORTEP drawings) of complex 3 with the numbering scheme of
atoms. It is evident that the complex 3 consists of the expected prone structure
where the butadiene ligand assumes the s-cis geometry. The dihedral angle between
the planes of cyclopentadienyl and diene ligands is 20.2°. Although closely re-
lated Zr(CSMeS)z(butadiene) and Zr(C5H5)2(1,4-diphenylbutadiene) favor the s-trans-
diene coordination, the present titanium-diene complexes always prefer the s-cis-
diene coordination. The titanium atom is in the pseudo-tetrahedral geometry if
the CsMe5 ligand is considered to occupy one coordination site and the butadiene
ligand two coordination sites at its C(1) and C(4) atoms. The terminal C-C bonds,
C(1)-C(2) [1.416(14) g] and C(3)-C(4) [1.418(14) g], are slightly longer than the
inner C(2)-C(3) bond [1.400(14) i], indicating the presence of substantial contri-
bution of metallacyclo-3-pentene structure, which is generally recognized for
zirconium-, hafnium-,and tantalum-diene complexes. The mean distance of terminal
C~-C bond [1.417 R] is the shortest among the values in the early transition metal-
diene complexes, Z.e. the dista?ces vary in a range of 1.420-1.473 i for zirconium-

diene complexes,g) 1.429-1.478 A for hafnium derivatives,g) and 1,456-1.500 ; in
the case of tantalum complexes.g) The mean distance of Ti-C(1) and Ti-C(4) bonds
[2.184 g] is a little shorter than the corresponding distance of Ti-C(2) and
Ti-C(3) bonds [2.285 i]. The former value is comparable with usual Ti-C bond

o
distances observed in Ti(CSMes)z(ethylene) [2.160 A]10) and titanacyclobutane

o

Ti(C.H.).(CH.C(Me).CH.) [2.138, 2.152 A], ") but is shorter than those in Ti (C.H.),-
5Hs) 5 (CH, 2CH, 2132, 5H5);
(1,2-dimethylallyl) [2.34, 2.35 A].
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Fig. 1. Molecular structure of TiCl(CSMeS)(butadiene) (3) drawn by
the thermal ellipsoids for nonhydrogen atoms at 20% probability

(]
level and by the spheres with radius of 1 A2 for hydrogen atoms.

Especially noteworthy is the large bite angle (B) defined by C(1)-Ti-C(4).
The value for the complex 3 [88.3(4)°] is the largest among the angles observed for
s-cis-coordinated metal-diene complexes, Z.e. 5.5-13.2° larger than the values
reported for zirconium- and hafnium-diene complexesg) and 10.4-16.9° larger than

3) The remarkably large bite

the angles reported for tantalum-diene complexes.
angle may arise from relatively short M-C(1) and M-C(4) distances as a result of
small ionic radius of titanium atom and a long nonbonded distance between C(1) and
C(4). Actually the M-C(terminal) bond distance of the present complex is much
shorter than the M-C(terminal) bonds observed for other early transition metal-
diene somplexes, which distributed from 2.251 g in Ta(C Me )(C H )(C4H6)2) to
2.371 A in Hf (Me PCH2CH2PMe )(butadlene)2 13) The nonbonded C(1)--C(4) distance in
the present complex [3.041(15) A] 1s longer than the corresponding distance in
TaCl (C H_) (butadiene) [2.694(16) A B=73.3°] or that in Fe(CO) (butadiene) [2.83 A
B= 82 6° ]12) accompanied with the expansion of bond angles around the C(2) and C(3)
atoms in the diene ligand [124.7(9)° and 126.1(9)°].

The dihedral angle between the planes defined by the Ti, C(1), and C(4) atoms
and the C(1), C(2), C(3), and C(4) atoms, is 105.0°, the magnitude of which is
similar to those found in other early transition metal-diene complexes but larger
than those in the corresponding complexes of late transition metals.g)

The X-ray structure analysis of complex 3 revealed the unigue coordination
geometry for diene ligand, which has the substantial 02,n-n4-metallacyclo-3-pentene
structure even though there observed a remarkable tendency to behave as nz-n4-
metal-diene species. The present X-ray together with NMR studies reveal that the

steric repulsions between the pentamethylcyclopentadienyl ligand and substituents
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on the diene ligand may act as the crucial factor in determining the supine or prone
geometry of the coordinated diene, Z.e. the alkyl substitution on the C(2) and/or
C(3) atoms bring about the supine geometry while the substitution on the C(1) and/or
C(4) atoms or nonsubstitution on the C(2) and C(3) atoms always lead to the prone

geometry.
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